日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Neutrino Fast Flavor Pendulum. Part 2: Collisional Damping

MPS-Authors

Padilla-Gay,  Ian
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

Tamborra,  Irene
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

Raffelt,  Georg G.
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Padilla-Gay, I., Tamborra, I., & Raffelt, G. G. (2022). Neutrino Fast Flavor Pendulum. Part 2: Collisional Damping. Physical Review D, 106, 103031. Retrieved from https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2022-126.


引用: https://hdl.handle.net/21.11116/0000-000C-B4D1-C
要旨
In compact astrophysical objects, the neutrino density can be so high that neutrino-neutrino refraction can lead to fast flavor conversion of the kind $\nu_e \bar\nu_e \leftrightarrow \nu_x \bar\nu_x$ with $x=\mu,\tau$, depending on the neutrino angle distribution. Previously, we have shown that in a homogeneous, axisymmetric two-flavor system, these collective solutions evolve in analogy to a gyroscopic pendulum. In flavor space, its deviation from the weak-interaction direction is quantified by a variable $\cos\vartheta$ that moves between $+1$ and $\cos\vartheta_{\rm min}$, the latter following from a linear mode analysis. As a next step, we include collisional damping of flavor coherence, assuming a common damping rate $\Gamma$ for all modes. Empirically we find that the damped pendular motion reaches an asymptotic level of pair conversion $f=A+(1-A)\cos\vartheta_{\rm min}$ (numerically $A\simeq 0.370$) that does not depend on details of the angular distribution (except for fixing $\cos\vartheta_{\rm min}$), the initial seed, nor $\Gamma$. On the other hand, even a small asymmetry between the neutrino and antineutrino damping rates strongly changes this picture and can even enable flavor instabilities in otherwise stable systems. Furthermore, we establish a formal connection with a stationary and inhomogeneous neutrino ensemble, showing that our findings also apply to this system.