English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Adaptation of Lacticaseibacillus rhamnosus CM MSU 529 to aerobic growth: A proteomic approach.

MPS-Authors
/persons/resource/persons254414

Kahnt,  Jörg
Core Facility Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Dinarieva, T. Y., Klimko, A. I., Kahnt, J., Cherdyntseva, T. A., & Netrusov, A. I. (2023). Adaptation of Lacticaseibacillus rhamnosus CM MSU 529 to aerobic growth: A proteomic approach. Microorganisms, 11(2): 313. doi:10.3390/microorganisms11020313.


Cite as: https://hdl.handle.net/21.11116/0000-000C-B63A-6
Abstract
The study describes the effect of aerobic conditions on the proteome of homofermentative lactic acid bacterium Lacticaseibacillus rhamnosus CM MSU 529 grown in a batch culture. Aeration caused the induction of the biosynthesis of 43 proteins, while 14 proteins were downregulated as detected by label-free LC-MS/MS. Upregulated proteins are involved in oxygen consumption (Pox, LctO, pyridoxine 5'-phosphate oxidase), xylulose 5-phosphate conversion (Xfp), pyruvate metabolism (PdhD, AlsS, AlsD), reactive oxygen species (ROS) elimination (Tpx, TrxA, Npr), general stress response (GroES, PfpI, universal stress protein, YqiG), antioxidant production (CysK, DkgA), pyrimidine metabolism (CarA, CarB, PyrE, PyrC, PyrB, PyrR), oligopeptide transport and metabolism (OppA, PepO), and maturation and stability of ribosomal subunits (RbfA, VicX). Downregulated proteins participate in ROS defense (AhpC), citrate and pyruvate consumption (CitE, PflB), oxaloacetate production (AvtA), arginine synthesis (ArgG), amino acid transport (GlnQ), and deoxynucleoside biosynthesis (RtpR). The data obtained shed light on mechanisms providing O2-tolerance and adaptation to aerobic conditions in strain CM MSU 529. The biosynthesis of 39 from 57 differentially abundant proteins was shown to be O2-sensitive in lactic acid bacteria for the first time. To our knowledge this is the first study on the impact of aerobic cultivation on the proteome of L. rhamnosus.