Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Photochemistry and heating/cooling of the multiphase interstellar medium with UV radiative transfer for magnetohydrodynamic simulations

MPG-Autoren
/persons/resource/persons225854

Gong,  Munan
Center for Astrochemical Studies at MPE, MPI for Extraterrestrial Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kim, J.-G., Gong, M., Kim, C.-G., & Ostriker, E. C. (2022). Photochemistry and heating/cooling of the multiphase interstellar medium with UV radiative transfer for magnetohydrodynamic simulations. The Astrophysical Journal Supplement Series, 264(1): 10. doi:10.3847/1538-4365/ac9b1d.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-CC85-8
Zusammenfassung
We present an efficient heating/cooling method coupled with chemistry and UV radiative transfer that can be applied to numerical simulations of the interstellar medium (ISM). We follow the time-dependent evolution of hydrogen species (H2, H, H+), assume carbon/oxygen species (C, C+, CO, O, and O+) are in formation–destruction balance given the nonsteady hydrogen abundances, and include essential heating/cooling processes needed to capture the thermodynamics of all ISM phases. UV radiation from discrete point sources and the diffuse background is followed through adaptive ray tracing and a six-ray approximation, respectively, allowing for H2 self-shielding; cosmic-ray heating and ionization are also included. To validate our methods and demonstrate their application for a range of density, metallicity, and radiation fields, we conduct a series of tests, including the equilibrium curves of thermal pressure versus density, the chemical and thermal structure in photodissociation regions, H I-to-H2 transitions, and the expansion of H II regions and radiative supernova remnants. Careful treatment of photochemistry and cosmic-ray ionization is essential for many aspects of ISM physics, including identifying the thermal pressure at which cold and warm neutral phases coexist. We caution that many current heating and cooling treatments used in galaxy formation simulations do not reproduce the correct thermal pressure and ionization fraction in the neutral ISM. Our new model is implemented in the MHD code Athena and incorporated in the TIGRESS simulation framework, for use in studying the star-forming ISM in a wide range of environments.