English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dark Energy Survey Year 3 results: Cosmology with moments of weak lensing mass maps

MPS-Authors
/persons/resource/persons221802

Varga,  T. N.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gatti, M., Jain, B., Chang, C., Raveri, M., Zürcher, D., Secco, L., et al. (2022). Dark Energy Survey Year 3 results: Cosmology with moments of weak lensing mass maps. Physical Review D, 106(8): 083509. doi:10.1103/PhysRevD.106.083509.


Cite as: https://hdl.handle.net/21.11116/0000-000C-CE54-E
Abstract
We present a cosmological analysis using the second and third moments of the weak lensing mass (convergence) maps from the first three years of data (Y3) data of the Dark Energy Survey. The survey spans an effective area of 4139 square degrees and uses the images of over 100 million galaxies to reconstruct the convergence field. The second moment of the convergence as a function of smoothing scale contains information similar to standard shear 2-point statistics. The third moment, or the skewness, contains additional non-Gaussian information. The data is analyzed in the context of the ΛCDM model, varying five cosmological parameters and 19 nuisance parameters modeling astrophysical and measurement systematics. Our modeling of the observables is completely analytical, and has been tested with simulations in our previous methodology study. We obtain a 1.7% measurement of the amplitude of fluctuations parameter S8≡σ8m/0.3)0.5=0.784±0.013. The measurements are shown to be internally consistent across redshift bins, angular scales, and between second and third moments. In particular, the measured third moment is consistent with the expectation of gravitational clustering under the ΛCDM model. The addition of the third moment improves the constraints on S8 and Ωm by ∼15% and ∼25% compared to an analysis that only uses second moments. We compare our results with Planck constraints from the cosmic microwave background, finding a 2.2–2.8σ tension in the full parameter space, depending on the combination of moments considered. The third moment, independently, is in 2.8σ tension with Planck, and thus provides a cross-check on the analyses of 2-point correlations.