English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Preprint

PySilSub: An open-source Python toolbox for implementing the method of silent substitution in vision and non-visual photoreception research

MPS-Authors
/persons/resource/persons268323

Spitschan,  M       
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Martin, J., Boynton, G., Baker, D., Wade, A., & Spitschan, M. (submitted). PySilSub: An open-source Python toolbox for implementing the method of silent substitution in vision and non-visual photoreception research.


Cite as: https://hdl.handle.net/21.11116/0000-000C-E052-A
Abstract
The normal human retina contains several classes of photosensitive cell-rods for low-light vision, three cone classes for daylight vision, and the intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin for non-image-forming functions including pupil size, melatonin suppression and circadian photoentrainment. The spectral sensitivities of the photoreceptors overlap significantly, which means that most lights will stimulate all photoreceptors, to varying degrees. The method of silent substitution is a powerful tool for stimulating individual photoreceptor classes selectively, which is useful in research and clinical settings. The main hardware requirement for silent substitution is a spectrally calibrated light stimulation system with at least as many primaries as there are photoreceptors under consideration. Device settings that will produce lights to selectively stimulate the photoreceptor(s) of interest can be found using a variety of analytic and algorithmic approaches. Here we present PySilSub (https://github.com/PySilentSubstitution/pysilsub), a novel Python package for silent substitution featuring flexible object-oriented support for individual colorimetric observer models (including human and mouse observers), multi-primary stimulation devices, and solving silent substitution problems with linear algebra and constrained numerical optimisation. The software is registered with the Python Package Index and includes example data sets from various multi-primary systems. We hope that PySilSub will facilitate the application of silent substitution in research and clinical settings.