English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Impact of Highly Concentrated Alkaline Treatment on Mesostructured Cobalt Oxide for the Oxygen Evolution Reaction

MPS-Authors
/persons/resource/persons250609

Budiyanto,  Eko
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons225248

Ochoa-Hernández,  Cristina
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59060

Tüysüz,  Harun
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Budiyanto, E., Ochoa-Hernández, C., & Tüysüz, H. (2023). Impact of Highly Concentrated Alkaline Treatment on Mesostructured Cobalt Oxide for the Oxygen Evolution Reaction. Advanced Sustainable Systems, 7(5): 2200499. doi:10.1002/adsu.202200499.


Cite as: https://hdl.handle.net/21.11116/0000-000C-E947-E
Abstract
Commercial alkaline water electrolysis cells typically use highly concentrate KOH as electrolyte, which strongly influences alteration of catalyst and its performance. Herein, the impact of alkaline treatment toward the structural alteration and electrochemical oxygen evolution reaction (OER) activity of well-defined ordered mesoporous Co3O4 is systematically studied. The overall morphology of mesostructured Co3O4 is relatively resilient to the exposure of highly concentrated alkaline solution up to 13 M KOH. The spectroscopic analyses, including in situ diffuse reflectance infrared spectroscopy, reveal the presence of carbonate-based species after the alkaline treatment due to impurities of the commercial KOH. The pre-treated samples exhibit a higher electrochemically active surface area, decreased charge transfer resistance, and increased current density from 103 to 155 mA cm−2 at 1.7 V versus RHE. The in situ electrochemical Raman spectroscopy investigation supports formation of active CoOOH phase on KOH pre-treated Co3O4, which might play a key role toward enhanced OER activity.