Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Finding Statistically Significant Interactions between Continuous Features

There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Sugiyama, M., & Borgwardt, K. (2019). Finding Statistically Significant Interactions between Continuous Features. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), 3490-3498. doi:10.24963/ijcai.2019/484.

Cite as: https://hdl.handle.net/21.11116/0000-000C-F22C-2
The search for higher-order feature interactions that are statistically significantly associated with a class variable is of high relevance in fields such as Genetics or Healthcare, but the combinatorial explosion of the candidate space makes this problem extremely challenging in terms of computational efficiency and proper correction for multiple testing. While recent progress has been made regarding this challenge for binary features, we here present the first solution for continuous features. We propose an algorithm which overcomes the combinatorial explosion of the search space of higher-order interactions by deriving a lower bound on the p-value for each interaction, which enables us to massively prune interactions that can never reach significance and to thereby gain more statistical power. In our experiments, our approach efficiently detects all significant interactions in a variety of synthetic and real-world datasets.