Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

networkGWAS: A network-based approach to discover genetic associations

MPG-Autoren
/persons/resource/persons75313

Borgwardt,  Karsten       
Borgwardt, Karsten / Machine Learning and Systems Biology, Max Planck Institute of Biochemistry, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Muzio, G., O’Bray, L., Meng-Papaxanthos, L., Klatt, J., & Borgwardt, K. (2023). networkGWAS: A network-based approach to discover genetic associations. Bioinformatics, 39(6): btad370. doi:10.1093/bioinformatics/btad370.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-F04F-D
Zusammenfassung
While the search for associations between genetic markers and complex traits has led to the discovery of tens of thousands of trait-related genetic variants, the vast majority of these only explain a small fraction of observed phenotypic variation. One possible strategy to detect stronger associations is to aggregate the effects of several genetic markers and to test entire genes, pathways or (sub)networks of genes for association to a phenotype. The latter, network-based genome-wide association studies, in particular suffers from a vast search space and an inherent multiple testing problem. As a consequence, current approaches are either based on greedy feature selection, thereby risking that they miss relevant associations, or neglect doing a multiple testing correction, which can lead to an abundance of false positive findings. To address the shortcomings of current approaches of network-based genome-wide association studies, we propose networkGWAS, a computationally efficient and statistically sound approach to network-based genome-wide association studies using mixed models and neighborhood aggregation. It allows for population structure correction and for well-calibrated p-values, which are obtained through circular and degree-preserving network permutation schemes. networkGWAS successfully detects known associations on semi-simulated common variants from A. thaliana and on simulated rare variants from H. sapiens, as well as neighborhoods of genes involved in stress-related biological processes on a stress-induced phenotype from S. cerevisiae. It thereby enables the systematic combination of gene-based genome-wide association studies with biological network information. Availability https://github.com/BorgwardtLab/networkGWAS.git Contact giulia.muzio{at}bsse.ethz.ch, karsten.borgwardt{at}bsse.ethz.ch