Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

reComBat: batch-effect removal in large-scale multi-source gene-expression data integration

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Adamer, M. F., Brüningk, S. C., Tejada-Arranz, A., Estermann, F., Basler, M., & Borgwardt, K. (2022). reComBat: batch-effect removal in large-scale multi-source gene-expression data integration. Bioinformatics Advances, 2(1): vbac071. doi:10.1093/bioadv/vbac071.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-EC71-B
Zusammenfassung
With the steadily increasing abundance of omics data produced all over the world under vastly different experimental conditions residing in public databases, a crucial step in many data-driven bioinformatics applications is that of data integration. The challenge of batch-effect removal for entire databases lies in the large number of batches and biological variation, which can result in design matrix singularity. This problem can currently not be solved satisfactorily by any common batch-correction algorithm.We present reComBat, a regularized version of the empirical Bayes method to overcome this limitation and benchmark it against popular approaches for the harmonization of public gene-expression data (both microarray and bulkRNAsq) of the human opportunistic pathogen Pseudomonas aeruginosa. Batch-effects are successfully mitigated while biologically meaningful gene-expression variation is retained. reComBat fills the gap in batch-correction approaches applicable to large-scale, public omics databases and opens up new avenues for data-driven analysis of complex biological processes beyond the scope of a single study.The code is available at https://github.com/BorgwardtLab/reComBat, all data and evaluation code can be found at https://github.com/BorgwardtLab/batchCorrectionPublicData.Supplementary data are available at Bioinformatics Advances online.