English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Light-independent regulation of algal photoprotection by CO2 availability

MPS-Authors
/persons/resource/persons198573

Küken,  A.
Mathematical Modelling and Systems Biology - Nikoloski, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons287483

Arend,  M.
Mathematical Modelling and Systems Biology - Nikoloski, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97320

Nikoloski,  Z.
Mathematical Modelling and Systems Biology - Nikoloski, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Águila Ruiz-Sola, M., Flori, S., Yuan, Y., Villain, G., Sanz-Luque, E., Redekop, P., et al. (2023). Light-independent regulation of algal photoprotection by CO2 availability. Nature Communications, 14: 1977. doi:10.1038/s41467-023-37800-6.


Cite as: https://hdl.handle.net/21.11116/0000-000C-F201-1
Abstract
Photosynthetic algae have evolved mechanisms to cope with suboptimal light and CO2 conditions. When light energy exceeds CO2 fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO2 Concentrating Mechanism (CCM). How light and CO2 signals converge to regulate these processes remains unclear. Here, we show that excess light activates photoprotection- and CCM-related genes by altering intracellular CO2 concentrations and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3/CCM genes while stabilizing the LHCSR1 protein. Finally, we show that the CCM regulator CIA5 also regulates photoprotection, controlling LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 protein accumulation. This work has allowed us to dissect the effect of CO2 and light on CCM and photoprotection, demonstrating that light often indirectly affects these processes by impacting intracellular CO2 levels.