Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Book Chapter

Methanogens in the Digestive Tract of Termites


Brune,  Andreas
Department-Independent Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Brune, A. (2018). Methanogens in the Digestive Tract of Termites. In J. H. P. Hackstein (Ed.), (Endo)symbiotic Methanogenic Archaea, 2nd edn. Microbiology Monographs, vol. 19 (pp. 81-101). Springer, Cham.

Cite as: https://hdl.handle.net/21.11116/0000-000C-F3BC-E
Methanogenesis in termite guts is a product of symbiotic digestion, fueled by hydrogen and reduced one-carbon compounds that are formed during the fermentative breakdown of plant fiber and humus. Methanogens are restricted to the hindgut region and can be found in several distinct microhabitats. In lower termites, the methanogens belong almost exclusively to the genus Methanobrevibacter. They are either endosymbionts of flagellate protists or colonize the periphery of the hindgut, a habitat that is not fully anoxic. The oxygen-reducing capacities of the few isolates available so far indicate that they are well adapted to the continuous influx of oxygen across the gut wall. In higher termites, which lack gut flagellates, the hindgut is highly compartmented and characterized by strong differences in pH, redox potential, and other microenvironmental conditions. Here, the archaeal communities differ strongly between compartments and comprise not only Methanobacteriales, but also Methanosarcinales, Methanomicrobiales, and the recently discovered Methanomassiliicoccales. All methanogens in termite guts belong to distinct phylogenetic clusters that are restricted to the intestinal tracts of insects and millipedes. Only few representatives have been isolated in pure culture. The high methane emissions of termites, together with their enormous biomass in the tropics, make them a significant natural source of this important greenhouse gas.