English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Chemo-enzymatic synthesis of long-chain oligosaccharides for studying xylan-modifying enzymes

MPS-Authors

Álvarez-Martínez,  Ignacio
Fabian Pfrengle, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons97366

Ruprecht,  Colin
Fabian Pfrengle, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons202132

Senf,  Deborah
Fabian Pfrengle, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons185928

Pfrengle,  Fabian
Fabian Pfrengle, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Álvarez-Martínez, I., Ruprecht, C., Senf, D., Wang, H.-t., Urbanowicz, B. R., & Pfrengle, F. (2023). Chemo-enzymatic synthesis of long-chain oligosaccharides for studying xylan-modifying enzymes. Chemistry – A European Journal, 29(26): e202203941. doi:10.1002/chem.202203941.


Cite as: https://hdl.handle.net/21.11116/0000-000C-F3DC-A
Abstract
Plant research is hampered in several aspects by a lack of pure oligosaccharide samples that closely represent structural features of cell wall glycans. An alternative to purely chemical synthesis to access these oligosaccharides is chemo-enzymatic synthesis using glycosynthases. These enzymes enable the ligation of oligosaccharide donors, when activated for example as α-glycosyl fluorides, with suitable acceptor oligosaccharides. Herein, the synthesis of xylan oligosaccharides up to dodecasaccharides is reported, with glycosynthase-mediated coupling reactions as key steps. The xylo-oligosaccharide donors were protected at the non-reducing end with a 4-O-tetrahydropyranyl (THP) group to prevent polymerization. Installation of an unnatural 3-O-methylether substituent at the reducing end xylose of the oligosaccharides ensured good water solubility. Biochemical assays demonstrated enzymatic activity for the xylan acetyltransferase XOAT1 from Arabidopsis thaliana, xylan arabinofuranosyl-transferase XAT3 enzymes from rice and switchgrass, and the xylan glucuronosyltransferase GUX3 from Arabidopsis thaliana. In case of the glucuronosyltransferase GUX3, MALDI-MS/MS analysis of the reaction product suggested that a single glucuronosyl substituent was installed primarily at the central xylose residues of the dodecasaccharide acceptor, demonstrating the value of long-chain acceptors for assaying biosynthetic glycosyltransferases.