Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Rate constants for saturation-recovery EPR and ELDOR of 14N-Spin labels

MPG-Autoren
/persons/resource/persons15495

Marsh,  Derek
Department of NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Marsh, D. (2023). Rate constants for saturation-recovery EPR and ELDOR of 14N-Spin labels. Journal of Magnetic Resonance, 350: 107414. doi:10.1016/j.jmr.2023.107414.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-F569-A
Zusammenfassung
Saturation-recovery (SR)-EPR can determine electron spin–lattice relaxation rates in liquids over a wide range of effective viscosity, making it especially useful for biophysical and biomedical applications. Here, I develop exact solutions for the SR-EPR and SR-ELDOR rate constants of 14N-nitroxyl spin labels as a function of rotational correlation time and spectrometer operating frequency. Explicit mechanisms for electron spin–lattice relaxation are: rotational modulation of the N-hyperfine and electron-Zeeman anisotropies (specifically including cross terms), spin-rotation interaction, and residual frequency-independent vibrational contributions from Raman processes and local modes. Cross relaxation from mutual electron and nuclear spin flips, and direct nitrogen nuclear spin–lattice relaxation, also must be included. Both the latter are further contributions from rotational modulation of the electron-nuclear dipolar interaction (END). All the conventional liquid-state mechanisms are defined fully by the spin-Hamiltonian parameters; only the vibrational contributions contain fitting parameters. This analysis gives a firm basis for interpreting SR (and inversion recovery) results in terms of additional, less standard mechanisms.