Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Single-cell segmentation in bacterial biofilms with an optimized deep learning method enables tracking of cell lineages and measurements of growth rates.

MPG-Autoren

Jelli,  Eric
Max Planck Research Group Bacterial Biofilms, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Ohmura,  Takuya
Max Planck Research Group Bacterial Biofilms, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Netter,  Niklas
Max Planck Research Group Bacterial Biofilms, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Abt,  Martin
Max Planck Research Group Bacterial Biofilms, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Jimenez-Siebert,  Eva
Max Planck Research Group Bacterial Biofilms, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Neuhaus,  Konstantin
Max Planck Research Group Bacterial Biofilms, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Rode,  Daniel K H
Max Planck Research Group Bacterial Biofilms, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254232

Drescher,  Knut       
Max Planck Research Group Bacterial Biofilms, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;
external;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jelli, E., Ohmura, T., Netter, N., Abt, M., Jimenez-Siebert, E., Neuhaus, K., et al. (2023). Single-cell segmentation in bacterial biofilms with an optimized deep learning method enables tracking of cell lineages and measurements of growth rates. Molecular Microbiology, 119(6), 659-676. doi:10.1111/mmi.15064.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-0219-5
Zusammenfassung
Bacteria often grow into matrix-encased three-dimensional (3D) biofilm
communities, which can be imaged at cellular resolution using confocal
microscopy. From these 3D images, measurements of single-cell properties
with high spatiotemporal resolution are required to investigate cellular
heterogeneity and dynamical processes inside biofilms. However, the
required measurements rely on the automated segmentation of bacterial
cells in 3D images, which is a technical challenge. To improve the
accuracy of single-cell segmentation in 3D biofilms, we first evaluated
recent classical and deep learning segmentation algorithms. We then
extended StarDist, a state-of-the-art deep learning algorithm, by
optimizing the post-processing for bacteria, which resulted in the most
accurate segmentation results for biofilms among all investigated
algorithms. To generate the large 3D training dataset required for deep
learning, we developed an iterative process of automated segmentation
followed by semi-manual correction, resulting in >18,000 annotated
Vibrio cholerae cells in 3D images. We demonstrate that this large
training dataset and the neural network with optimized post-processing
yield accurate segmentation results for biofilms of different species
and on biofilm images from different microscopes. Finally, we used the
accurate single-cell segmentation results to track cell lineages in
biofilms and to perform spatiotemporal measurements of single-cell
growth rates during biofilm development.