English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

GRB 160410A: The first chemical study of the interstellar medium of a short GRB

MPS-Authors
/persons/resource/persons4634

Greiner,  J.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fernández, J. F. A., Thöne, C. C., Kann, D. A., de Postigo, A. U., Selsing, J., Schady, P., et al. (2023). GRB 160410A: The first chemical study of the interstellar medium of a short GRB. Monthly Notices of the Royal Astronomical Society, 520(1), 613-636. doi:10.1093/mnras/stad099.


Cite as: https://hdl.handle.net/21.11116/0000-000D-0290-D
Abstract
Short gamma-ray bursts (SGRBs) are produced by the coalescence of compact binary systems which are remnants of massive stars. GRB 160410A is classified as a short-duration GRB with extended emission and is currently the farthest SGRB with a redshift determined from an afterglow spectrum and also one of the brightest SGRBs to date. The fast reaction to the Neil Gehrels Swift Observatory alert allowed us to obtain a spectrum of the afterglow using the X-shooter spectrograph at the Very Large Telescope (VLT). The spectrum shows several absorption features at a redshift of z = 1.7177, in addition, we detect two intervening systems at z = 1.581 and z = 1.444. The spectrum shows Ly α in absorption with a column density of log (N(H i)/cm2) = 21.2 ± 0.2 which, together with Fe ii, C ii, Si ii, Al ii, and O i, allow us to perform the first study of chemical abundances in a SGRB host galaxy. We determine a metallicity of [X/H] = −2.3 ± 0.2 for Fe ii and −2.5 ± 0.2 for Si ii and no dust depletion. We also find no evidence for extinction in the afterglow spectral energy distribution modelling. The environment has a low degree of ionization and the C iv and Si iv lines are completely absent. We do not detect an underlying host galaxy down to deep limits. Additionally, we compare GRB 160410A to GRB 201221D, another high-z short GRB that shows absorption lines at z = 1.045 and an underlying massive host galaxy.