English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Meta-Learned Models of Cognition

MPS-Authors
/persons/resource/persons256660

Binz,  M       
Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons252796

Jagadish,  AK       
Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons139782

Schulz,  E
Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Binz, M., Dasgupta, I., Jagadish, A., Botvinick, M., Wang, J., & Schulz, E. (2024). Meta-Learned Models of Cognition. Behavioral and Brain Sciences, 47: e147. doi:10.1017/S0140525X23003266.


Cite as: https://hdl.handle.net/21.11116/0000-000D-036B-8
Abstract
Psychologists and neuroscientists extensively rely on computational models for studying and analyzing the human mind. Traditionally, such computational models have been hand-designed by expert researchers. Two prominent examples are cognitive architectures and Bayesian models of cognition. While the former requires the specification of a fixed set of computational structures and a definition of how these structures interact with each other, the latter necessitates the commitment to a particular prior and a likelihood function which - in combination with Bayes' rule - determine the model's behavior. In recent years, a new framework has established itself as a promising tool for building models of human cognition: the framework of meta-learning. In contrast to the previously mentioned model classes, meta-learned models acquire their inductive biases from experience, i.e., by repeatedly interacting with an environment. However, a coherent research program around meta-learned models of cognition is still missing to this day. The purpose of this article is to synthesize previous work in this field and establish such a research program. We accomplish this by pointing out that meta-learning can be used to construct Bayes-optimal learning algorithms, allowing us to draw strong connections to the rational analysis of cognition. We then discuss several advantages of the meta-learning framework over traditional methods and reexamine prior work in the context of these new insights.