日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Plant genome evolution in the genus Eucalyptus driven by structural rearrangements that promote sequence divergence

MPS-Authors
/persons/resource/persons276024

Murray,  K       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Ferguson, S., Jones, A., Murray, K., Andrew, S., Schwessinger, B., & Borevitz, J. (2024). Plant genome evolution in the genus Eucalyptus driven by structural rearrangements that promote sequence divergence. Genome Research, Epub ahead. doi:10.1101/gr.277999.123.


引用: https://hdl.handle.net/21.11116/0000-000D-03BD-B
要旨
Genomes have a highly organized architecture (nonrandom organization of functional and nonfunctional genetic elements within chromosomes) that is essential for many biological functions, particularly, gene expression and reproduction. Despite the need to conserve genome architecture, a high level of structural variation has been observed within species. As species separate and diverge, genome architecture also diverges, becoming increasingly poorly conserved as divergence time increases. However, within plant genomes, the processes of genome architecture divergence are not well described. Here we use long-read sequencing and de novo assembly of 33 phylogenetically diverse, wild and naturally evolving Eucalyptus species, covering 1-50 million years of diverging genome evolution to measure genome architectural conservation and describe architectural divergence. The investigation of these genomes revealed that following lineage divergence genome architecture is highly fragmented by rearrangements. As genomes continue to diverge, the accumulation of mutations and subsequent divergence beyond recognition of rearrangements becomes the primary driver of genome divergence. The loss of syntenic regions also contribute to genome divergence, but at a slower pace than rearrangements. We hypothesise that duplications and translocations are potentially the greatest contributors to Eucalyptus genome divergence.