Abstract
Response tokens (also known as backchannels, continuers, or feedback) are a frequent feature of human interaction, where they serve to display understanding and streamline turn-taking. We propose a bottom-up method to study responsive behaviour across 16 languages (8 language families). We use sequential context and recurrence of turns formats to identify candidate response tokens in a language-agnostic way across diverse conversational corpora. We then use UMAP clustering directly on speech signals to represent structure and variation. We find that (i) written orthographic annotations underrepresent the attested variation, (ii) distinctions between formats can be gradient rather than discrete, (iii) most languages appear to make available a broad distinction between a minimal nasal format `mm' and a fuller `yeah’-like format. Charting this aspect of human interaction contributes to our understanding of interactional infrastructure across languages and can inform the design of speech technologies.