Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Visualizing the disordered nuclear transport machinery in situ

MPG-Autoren
/persons/resource/persons200233

Heidari,  Maziar       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons244756

Obarska-Kosinska,  Agnieszka       
Department of Molecular Sociology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons238046

Siggel,  Marc       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons232071

Beck,  Martin       
Department of Molecular Sociology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons15259

Hummer,  Gerhard       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

s41586-023-05990-0.pdf
(beliebiger Volltext), 13MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Yu, M., Heidari, M., Mikhaleva, S., Tan, P. S., Mingu, S., Ruan, H., et al. (2023). Visualizing the disordered nuclear transport machinery in situ. Nature, 617(7959), 162-169. doi:10.1038/s41586-023-05990-0.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-0B0F-8
Zusammenfassung
The approximately 120 MDa mammalian nuclear pore complex (NPC) acts as a gatekeeper for the transport between the nucleus and cytosol1. The central channel of the NPC is filled with hundreds of intrinsically disordered proteins (IDPs) called FG-nucleoporins (FG-NUPs)2,3. Although the structure of the NPC scaffold has been resolved in remarkable detail, the actual transport machinery built up by FG-NUPs—about 50 MDa—is depicted as an approximately 60-nm hole in even highly resolved tomograms and/or structures computed with artificial intelligence4–11. Here we directly probed conformations of the vital FG-NUP98 inside NPCs in live cells and in permeabilized cells with an intact transport machinery by using a synthetic biology-enabled site-specific small-molecule labelling approach paired with highly time-resolved fluorescence microscopy. Single permeabilized cell measurements of the distance distribution of FG-NUP98 segments combined with coarse-grained molecular simulations of the NPC allowed us to map the uncharted molecular environment inside the nanosized transport channel. We determined that the channel provides—in the terminology of the Flory polymer theory12—a ‘good solvent’ environment. This enables the FG domain to adopt expanded conformations and thus control transport between the nucleus and cytoplasm. With more than 30% of the proteome being formed from IDPs, our study opens a window into resolving disorder–function relationships of IDPs in situ, which are important in various processes, such as cellular signalling, phase separation, ageing and viral entry.