English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

SIRT7 suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions in mice

MPS-Authors
/persons/resource/persons224052

Braun,  Thomas
Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons228650

Bober,  Eva
Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yoshizawa, T., Sato, Y., Sobuz, S. U., Mizumoto, T., Tsuyama, T., Karim, M. F., et al. (2022). SIRT7 suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions in mice. NATURE COMMUNICATIONS, 13(1): 7439. doi:10.1038/s41467-022-35219-z.


Cite as: https://hdl.handle.net/21.11116/0000-000D-1BA3-D
Abstract
Brown adipose tissue plays a central role in the regulation of the energy balance by expending energy to produce heat. NAD(+)-dependent deacylase sirtuins have widely been recognized as positive regulators of brown adipose tissue thermogenesis. However, here we reveal that SIRT7, one of seven mammalian sirtuins, suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions. Whole-body and brown adipose tissue-specific Sirt7 knockout mice have higher body temperature and energy expenditure. SIRT7 deficiency increases the protein level of UCP1, a key regulator of brown adipose tissue thermogenesis. Mechanistically, we found that SIRT7 deacetylates insulin-like growth factor 2 mRNA-binding protein 2, an RNA-binding protein that inhibits the translation of Ucp1 mRNA, thereby enhancing its inhibitory action on Ucp1. Furthermore, SIRT7 attenuates the expression of batokine genes, such as fibroblast growth factor 21. In conclusion, we propose that SIRT7 serves as an energy-saving factor by suppressing brown adipose tissue functions. Sirtuins have been reported to positively regulate brown adipose tissue thermogenesis. Here the authors report that brown adipocytic SIRT7 suppresses whole-body energy expenditure and thermogenesis in mice, potentially by attenuating batokine gene expressions and Ucp1 mRNA translation.