Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Direct recognition of crystal structures via three-dimensional convolutional neural networks with high accuracy and tolerance to random displacements and missing atoms

MPG-Autoren
/persons/resource/persons249360

Colnaghi,  Timoteo
Max Planck Computing and Data Facility, Max Planck Society;

/persons/resource/persons109883

Marek,  Andreas
Max Planck Computing and Data Facility, Max Planck Society;

/persons/resource/persons110221

Rampp,  Markus
Max Planck Computing and Data Facility, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rao, Z., Li, Y., Zhang, H., Colnaghi, T., Marek, A., Rampp, M., et al. (2023). Direct recognition of crystal structures via three-dimensional convolutional neural networks with high accuracy and tolerance to random displacements and missing atoms. Scripta Materialia, 234: 115542. doi:10.1016/j.scriptamat.2023.115542.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-2A89-A
Zusammenfassung
Computational methods and machine learning algorithms for automatic information extraction are crucial to enable data-driven materials science. These approaches are changing materials characterization and analytics, which often require a user-specified threshold to e.g. detect structure or symmetries in structures with defects. Here, we present a machine learning-based approach that directly works on the original periodic arrangements of atoms based on a three-dimensional convolutional neural network without any transformation of descriptors. Our approach shows a high classification accuracy and tolerance to the presence of random displacements and missing atoms. Experimentally, we successfully reconstruct the ordered L12 precipitates extracted from atom probe tomography data, consistent with segmentation based on isocomposition surfaces. The convolutional layers are essential for the simultaneous identification of compositional and structural information, which also give rise to its high tolerance. Our work advances machine learning-based crystal structure identification for incomplete crystal structural data.