Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Parkinson's disease may disrupt overlapping subthalamic nucleus and pallidal motor networks

MPG-Autoren
/persons/resource/persons19617

Draganski,  Bogdan
Département des Neurosciences Cliniques, Laboratoire de Recherche en Neuroimagerie (LREN), Centre hospitalier universitaire vaudois, Lausanne, Switzerland;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Santos_2023.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)

Santos_2023_Suppl.pdf
(Ergänzendes Material), 897KB

Zitation

Santos, A., Kherif, F., Melie-Garcia, L., Lutti, A., Chiappini, A., Rauschenbach, L., et al. (2023). Parkinson's disease may disrupt overlapping subthalamic nucleus and pallidal motor networks. NeuroImage: Clinical, 38: 103432. doi:10.1016/j.nicl.2023.103432.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-2CAA-3
Zusammenfassung
There is an ongoing debate about differential clinical outcome and associated adverse effects of deep brain stimulation (DBS) in Parkinson’s disease (PD) targeting the subthalamic nucleus (STN) or the globus pallidus pars interna (GPi). Given that functional connectivity profiles suggest beneficial DBS effects within a common network, the empirical evidence about the underlying anatomical circuitry is still scarce. Therefore, we investigate the STN and GPi-associated structural covariance brain patterns in PD patients and healthy controls.

We estimate GPi’s and STN’s whole-brain structural covariance from magnetic resonance imaging (MRI) in a normative mid- to old-age community-dwelling cohort (n=1184) across maps of grey matter volume, magnetization transfer (MT) saturation, longitudinal relaxation rate (R1), effective transversal relaxation rate (R2*) and effective proton density (PD*). We compare these with the structural covariance estimates in patients with idiopathic PD (n=32) followed by validation using a reduced size controls’ cohort (n=32).

In the normative data set, we observed overlapping spatially distributed cortical and subcortical covariance patterns across maps confined to basal ganglia, thalamus, motor, and premotor cortical areas. Only the subcortical and midline motor cortical areas were confirmed in the reduced size cohort. These findings contrasted with the absence of structural covariance with cortical areas in the PD cohort.

We interpret with caution the differential covariance maps of overlapping STN and GPi networks in patients with PD and healthy controls as correlates of motor network disruption. Our study provides face validity to the proposed extension of the currently existing structural covariance methods based on morphometry features to multiparameter MRI sensitive to brain tissue microstructure.