English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Preprint

Data-driven aeolian dust emission scheme for climate modelling, evaluated with EMAC 2.54

MPS-Authors
/persons/resource/persons193111

Klingmüller,  Klaus
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  Jos
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Klingmüller, K., & Lelieveld, J. (2022). Data-driven aeolian dust emission scheme for climate modelling, evaluated with EMAC 2.54. Geoscientific Model Development Discussions, 15. doi:10.5194/gmd-2022-232.


Cite as: https://hdl.handle.net/21.11116/0000-000D-2FF9-7
Abstract
Aeolian dust has significant impacts on climate, public health, infrastructure and ecosystems. Assessing dust concentrations and these impacts is challenging because the emissions depend on many environmental factors and can vary greatly with meteorological conditions. We present a data-driven aeolian dust scheme that combines machine learning components and physical equations to predict atmospheric dust concentrations and quantify the sources. The numerical scheme was trained to reproduce dust aerosol optical depth retrievals by the Infrared Atmospheric Sounding Interferometer on board the MetOp-A satellite. The input parameters included meteorological variables from the fifth generation atmospheric reanalysis of the European Centre for Medium-Range Weather Forecasts. The trained dust scheme can be applied as an emission submodel, to be used in climate and Earth system models, which is reproducibly derived from observational data so that a priori assumptions and manual parameter tuning can be largely avoided. We compared the trained emission submodel to a state-of-the-art emission parametrisation, showing that it substantially improves the representation of aeolian dust in the global atmospheric chemistry-climate model EMAC.