English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Leveling Down in Computer Vision: Pareto Inefficiencies in Fair Deep Classifiers

MPS-Authors
/persons/resource/persons249831

Zietlow,  Dominik
Max Planck Research Group Autonomous Learning, Max Planck Institute for Intelligent Systems, Max Planck Society;
External Organizations;

/persons/resource/persons84193

Schölkopf,  Bernhard       
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;
External Organizations;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zietlow, D., Lohaus, M., Balakrishnan, G., Kleindessner, M., Locatello, F., Schölkopf, B., et al. (2023). Leveling Down in Computer Vision: Pareto Inefficiencies in Fair Deep Classifiers. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022) (pp. 10400-10411). Piscataway, NJ: IEEE. doi:10.1109/CVPR52688.2022.01016.


Cite as: https://hdl.handle.net/21.11116/0000-0010-3034-D
Abstract
There is no abstract available