English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Optimizing Rank-based Metrics with Blackbox Differentiation

MPS-Authors
/persons/resource/persons233044

Rolínek,  Michal
Max Planck Research Group Autonomous Learning, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons290044

Paulus,  Anselm
Max Planck Research Group Autonomous Learning, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons249825

Vlastelica,  Marin
Max Planck Research Group Autonomous Learning, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons173588

Martius,  Georg
Max Planck Research Group Autonomous Learning, Max Planck Institute for Intelligent Systems, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rolínek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., & Martius, G. (2020). Optimizing Rank-based Metrics with Blackbox Differentiation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020) (pp. 7617-7627). Piscataway, NJ: IEEE. doi:10.1109/CVPR42600.2020.00764.


Cite as: https://hdl.handle.net/21.11116/0000-000F-6D66-5
Abstract
There is no abstract available