English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Atomic displacements enabling the observation of the anomalous Hall effect in a non-collinear antiferromagnet

MPS-Authors
/persons/resource/persons289772

Rimmler,  Berthold H.       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;
International Max Planck Research School for Science and Technology of Nano-Systems, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260878

Hazra,  Binoy K.       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons262310

Pal,  Banabir
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons262020

Mohseni,  Katayoon
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260984

Bedoya-Pinto,  Amilcar       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons259903

Deniz,  Hakan
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons289775

Tangi,  Malleswararao
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260841

Kostanovskiy,  Ilya
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260281

Meyerheim,  Holger L.
Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons245678

Parkin,  Stuart S. P.       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Advanced Materials-2023-Rimmler.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Rimmler, B. H., Hazra, B. K., Pal, B., Mohseni, K., Taylor, J. M. M., Bedoya-Pinto, A., et al. (2023). Atomic displacements enabling the observation of the anomalous Hall effect in a non-collinear antiferromagnet. Advanced Materials. doi:10.1002/adma.202209616.


Cite as: https://hdl.handle.net/21.11116/0000-000D-4D99-1
Abstract
Antiferromagnets with non-collinear spin structures display various properties that make them attractive for spintronic devices. Some of the most interesting examples are an anomalous Hall effect despite negligible magnetization and a spin Hall effect with unusual spin polarization directions. However, these effects can only be observed when the sample is set predominantly into a single antiferromagnetic domain state. This can only be achieved when the compensated spin structure is perturbed and displays weak moments due to spin canting that allows for external domain control. In thin films of cubic non-collinear antiferromagnets, this imbalance is previously assumed to require tetragonal distortions induced by substrate strain. Here, it is shown that in Mn3SnN and Mn3GaN, spin canting is due to structural symmetry lowering induced by large displacements of the magnetic manganese atoms away from high-symmetry positions. These displacements remain hidden in X-ray diffraction when only probing the lattice metric and require measurement of a large set of scattering vectors to resolve the local atomic positions. In Mn3SnN, the induced net moments enable the observation of the anomalous Hall effect with an unusual temperature dependence, which is conjectured to result from a bulk-like temperature-dependent coherent spin rotation within the kagome plane.