English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Spatial homogeneity of pH in aerosol microdroplets

MPS-Authors
/persons/resource/persons230378

Li,  Meng
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101295

Su,  Hang
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  Ulrich
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons127588

Cheng,  Yafang
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Li, M., Kan, Y., Su, H., Pöschl, U., Parekh, S. H., Bonn, M., et al. (2023). Spatial homogeneity of pH in aerosol microdroplets. Chem, 9(4), 1036 -1046. doi:10.1016/j.chempr.2023.02.019.


Cite as: https://hdl.handle.net/21.11116/0000-000D-3E91-A
Abstract
Acidity plays a key role in atmospheric aerosol formation and strongly influences aerosols’ effects on air quality, climate, and the ecosystem. Fundamental questions about aerosol pH are, however, still under debate: how does the pH of aerosol microdroplets compare to that of the parent bulk solution, and do stable pH gradients exist within these microdroplets? Here, by using advanced single-particle and hyperspectral Raman microscopies, we directly measure the pH distribution in NaH2PO4-Na2HPO4 microdroplets (7–10 μm in radius) produced with the conjugate acid-base pair of H2PO4−-HPO42−. We show that the pH values of the investigated microdroplets are indistinguishable from the parent bulk solutions of the same electrolyte concentration and that the pH is essentially constant across the microdroplets, with standard deviations below 0.2 pH units. Similar results are observed for acidic NaHSO4 microdroplets. Our findings are essential to understanding atmospheric multiphase chemistry and overall reactions and processes occurring in aqueous microdroplets.