English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Direct recognition of crystal structures via three-dimensional convolutional neural networks with high accuracy and tolerance to random displacements and missing atoms

MPS-Authors
/persons/resource/persons228049

Rao,  Ziyuan
De magnete - Designing Magnetism on the atomic scale, MPG Group, Interdepartmental and Partner Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons249274

Li,  Yue
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons249360

Colnaghi,  Timoteo
Max Planck Computing and Data Facility, Max Planck Society;

/persons/resource/persons109883

Marek,  A.
Max Planck Computing and Data Facility, Max Planck Society;

/persons/resource/persons110221

Rampp,  Markus
Max Planck Computing and Data Facility, Max Planck Society;

/persons/resource/persons185411

Gault,  Baptiste
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Imperial College, Royal School of Mines, Department of Materials, London, SW7 2AZ, UK;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rao, Z., Li, Y., Zhang, H., Colnaghi, T., Marek, A., Rampp, M., et al. (2023). Direct recognition of crystal structures via three-dimensional convolutional neural networks with high accuracy and tolerance to random displacements and missing atoms. Scripta Materialia, 234: 115542. doi:10.1016/j.scriptamat.2023.115542.


Cite as: https://hdl.handle.net/21.11116/0000-000D-5663-3
Abstract
There is no abstract available