English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification

MPS-Authors
/persons/resource/persons285542

Knaut,  H       
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons285547

Pelegri,  F
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274405

Bohmann,  K
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272672

Schwarz,  H
Electron Microscopy, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271460

Nüsslein-Volhard,  C       
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Knaut, H., Pelegri, F., Bohmann, K., Schwarz, H., & Nüsslein-Volhard, C. (2000). Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. Journal of Cell Biology, 149(4), 875-888. doi:10.1083/jcb.149.4.875.


Cite as: https://hdl.handle.net/21.11116/0000-000D-4822-C
Abstract
Work in different organisms revealed that the vasa gene product is essential for germline specification. Here, we describe the asymmetric segregation of zebrafish vasa RNA, which distinguishes germ cell precursors from somatic cells in cleavage stage embryos. At the late blastula (sphere) stage, vasa mRNA segregation changes from asymmetric to symmetric, a process that precedes primordial germ cell proliferation and perinuclear localization of Vasa protein. Analysis of hybrid fish between Danio rerio and Danio feegradei demonstrates that zygotic vasa transcription is initiated shortly after the loss of unequal vasa mRNA segregation. Blocking DNA replication indicates that the change in vasa RNA segregation is dependent on a maternal program. Asymmetric segregation is impaired in embryos mutant for the maternal effect gene nebel. Furthermore, ultrastructural analysis of vasa RNA particles reveals that vasa RNA, but not Vasa protein, localizes to a subcellular structure that resembles nuage, a germ plasm organelle. The structure is initially associated with the actin cortex, and subsequent aggregation is inhibited by actin depolymerization. Later, the structure is found in close proximity of microtubules. We previously showed that its translocation to the distal furrows is microtubule dependent. We propose that vasa RNA but not Vasa protein is a component of the zebrafish germ plasm. Triggered by maternal signals, the pattern of germ plasm segregation changes, which results in the expression of primordial germ cell-specific genes such as vasa and, consequently, in germline fate commitment.