Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The real honeycomb structure-From the macroscopic down to the atomic scale

MPG-Autoren
/persons/resource/persons213389

Gura,  Leonard
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons268199

Brinker,  Matthias
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons203263

Marschalik,  Patrik
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons268193

Kalass,  Florian
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21684

Junkes,  Heinz
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21628

Heyde,  Markus       
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

215305_1_5.0148421.pdf
(Verlagsversion), 8MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gura, L., Brinker, M., Marschalik, P., Kalass, F., Junkes, B., Junkes, H., et al. (2023). The real honeycomb structure-From the macroscopic down to the atomic scale. Journal of Applied Physics, 133(21): 215305. doi:10.1063/5.0148421.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-55A8-6
Zusammenfassung
The honeycomb’s eponymous structure is omnipresent in our every day lives. We want to provide some inspiration to perform structural analyses of these structures and to draw comparisons between them. In the present study, we detect honeycomb patterns and related complex network structures on different length scales ranging from macroscopic objects down to the atomic scale of 2D materials. In 2D materials, a subset of the honeycomb structure-the kagome lattice-is very interesting due to unique material properties. For structure detection, we developed a program written in Python. The program is very adaptable and provides a graphical user interface to modify the detected network interactively. With the help of this program, we directly compare honeycomb structures with atomic network structures. Both honeycombs and 2D atom networks can show local deviations from their characteristic hexagonal pattern. The structural deviations at the macroscopic scale and at the atomic scale are very similar. We provide additional structural analyses of every day objects and encourage everyone to use our software that is freely accessible.