English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Janus Ga2SeTe and In2SeTe nanosheets: Excellent photocatalysts for hydrogen production under neutral pH

MPS-Authors
/persons/resource/persons145702

Ainane,  Abdelmajid
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bouziani, I., Essaoudi, I., Ainane, A., & Ahuja, R. (2023). Janus Ga2SeTe and In2SeTe nanosheets: Excellent photocatalysts for hydrogen production under neutral pH. International Journal of Hydrogen Energy, 48(43), 16358-16369. doi:10.1016/j.ijhydene.2023.01.133.


Cite as: https://hdl.handle.net/21.11116/0000-000D-736B-A
Abstract
In the past few years, Janus nanosheets have attracted much interest according to their specific structure and considerable potential to address the energy and environmental issues. Herein, the electronic, optical and photocatalytic properties of two-dimensional Janus Ga2SeTe and In2SeTe have been studied using ab-initio computations based on the density functional theory. The obtained results show that these nanomaterials exhibit a semiconductor behavior with direct and moderate bandgaps using hybrid HSE06 func-tional. Subsequently, the understudied compounds present suitable optical conductivity, absorption, transmission and reflectivity for water splitting under the ultraviolet-visible light irradiation. Interestingly, the band edge positions of Janus Ga2SeTe and In2SeTe excellently straddle the redox potentials of water under neutral pH. Additionally, the free energy values for the formation of H2 from H adsorbed on the Ga2SeTe and In2SeTe com-pounds are respectively 1.304eV and 0.976eV at pH = 7. More excitingly, the present study proposes strain engineering approach to improve the photocatalytic performance of the Janus Ga2SeTe and In2SeTe monolayers. Specifically, the investigated semiconductors show more appropriate band edge alignment and better hydrogen evolution reaction ac-tivity under biaxial tensile strain, which fulfil the water splitting requirements at neutral pH conditions. Our findings conclude that the Janus Ga2SeTe and In2SeTe nanosheets are promising candidates for photocatalytic hydrogen production.