English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Thesis

Investigation and optimization of biosynthetic pathways from entomophatogenic bacteria

MPS-Authors
/persons/resource/persons204795

Kavakli,  Siyar
Natural Product Function and Engineering, Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kavakli, S. (2023). Investigation and optimization of biosynthetic pathways from entomophatogenic bacteria. PhD Thesis, Goethe-Universität Frankfurt am Main, Frankfurt am Main.


Cite as: https://hdl.handle.net/21.11116/0000-000D-6197-B
Abstract
This work addresses the investigation of the biosynthesis mechanisms of type II polyketide synthase (PKS) and fatty acid synthase (FAS) derived specialized metabolites (SMs) from Photorhabdus laumondii.
The elucidation of the biosynthetic pathway of the bacterial 3,5-dihydroxy-4-isopropyl-trans-stilbene (IPS) was one of the major topics of this thesis. IPS exhibits several bioactive characteristics as it inhibits the phenoloxidase of insects, acts antibacterial, but also influences the soluble epoxide hydrolase which is involved in inflammatory reactions. It was recently approved as a treatment against psoriasis by the FDA and is the first Photorhabdus derived drug.
The stilbene generation in Photorhabdus requires the formation of the two acyl-carrier-protein (ACP) bound 5-phenyl-2,4-pentadienoyl- and isovaleryl-β-ketoacyl-moieties. The ketosynthase (KS)/cyclase StlD catalyzes a ring formation via a Michael-addition between the two intermediates which is then further processed by an aromatase. The formation of 5-phenyl-2,4-pentadienoyl-ACP was shown via in vitro assays with purified proteins by proving the influence of the KS FabH, ketoreductase FabG and dehydratase FabA or FabZ of the fatty acid metabolism. While E. coli was able to complement most of these enzymes in attempts to produce IPS in the heterologous host, the Photorhabdus derived FabH was not replaceable despite 73 % sequence identity with the E. coli based isoenzyme, acting as a gatekeeper enzyme for cinnamic acid (CA) moieties. Furthermore, the ability to incorporate meta-substituted halogenated CA-derivatives was shown in order to produce 3-chloro- and 3-bromo-IPS. While studying the stilbene biosynthesis, the ability of Photorhabdus and Xenorhabdus to produce hydrazines was also discovered.
The second investigated biosynthesis was the formation of benzylideneacetone (BZA). BZA is produced by Photorhabdus and Xenorhabdus strains acting as a suppressor for the immune cascade of insects and has also antibiotic activities towards Gram-negative bacteria. Due to its structural similarity towards CA and the intermediates during the stilbene formation, a shared mechanism for Photorhabdus and Xenorhabdus budapestensis was proposed due to their ability to produce CA. The production of BZA was also dependent on the stilbene related CoA-ligase, the ACP and FabH. It was verified in vitro and in vivo in E. coli yielding a 150-fold increase of the BZA production compared to the Photorhabdus and Xenorhabdus wildtype (WT) strains.
The second part of this work deals with the optimization of P. laumondii strains regarding the production titers of IPS. Therefore, several deletions of other SM related genes as well as promoter exchanges in front of stilbene related genes were carried out. These approaches were combined with the upregulation of the phenylalanine by heterologous plasmid expression, since it is the precursor of CA. Another approach applied in parallel was the optimization of the cultivation conditions with different media and supplementation with XAD-resins. It was proved that media rich on fatty acids or peptides led to higher optical densities of the cultures and thus to higher titers of stilbenes. Since IPS is inhibiting the phenoloxidase, an enzyme important for the insect immunity, it was hypothesized that cultivation in media containing insects might enhance the output of this SM. Starting from 23 mg/l of IPS in the P. laumondii WT strain, it was possible to increase the production levels to more than 860 mg/l by utilizing the mentioned approaches.
The last topic of this thesis focuses on the production of epoxidated IPS (EPS) and its derivatives. Under laboratory conditions, only a low titer of EPS was observed for the wildtype strain. However, the optimized IPS strains and IPS-production conditions could also be applied for EPS which led to higher productions and also to the detection of many new derivatives. Most of the EPS derivatives were amino acid or peptide derived acting as nucleophiles to open the epoxide ring and yielding β-amino-alcohols. However, purification and chemical synthesis attempts to obtain EPS failed due to its poor stability. Epoxides were utilized in in vitro assays with amino acids, peptides and proteins to get insights whether epoxidations might act as posttranslational modification in Photorhabdus. The reactions were performed with styrene oxide and stilbene oxide replacing EPS based on their structural similarity. The modifications were executed successfully although proteomics approaches with in vivo data are required to confirm these findings. During the purification attempts of EPS, further derivatives were detected. The structures of dimerized stilbenes, a cis-isomer of IPS and another derivative that might incorporate an amino-group in the resveratrol ring were proposed on the basis of the HPLC-MS data.