English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Convolutional neural network framework for the automated analysis of transition metal X-ray photoelectron spectra

MPS-Authors
/persons/resource/persons261157

Pielsticker,  Lukas
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons241074

Nicholls,  Rachel L.
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons237560

DeBeer,  Serena
Research Department DeBeer, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons54379

Greiner,  Mark
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pielsticker, L., Nicholls, R. L., DeBeer, S., & Greiner, M. (2023). Convolutional neural network framework for the automated analysis of transition metal X-ray photoelectron spectra. Analytica Chimica Acta, (1271): 341433. doi:10.1016/j.aca.2023.341433.


Cite as: https://hdl.handle.net/21.11116/0000-000D-D921-9
Abstract
There is no abstract available