Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Locally adaptive cellular automata for goal-oriented self-organization

MPG-Autoren
/persons/resource/persons263811

Giannakakis,  E       
Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons263156

Buendia,  V       
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons173580

Levina,  A
Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Khajehabdollahi, S., Giannakakis, E., Buendia, V., Martius, G., & Levina, A. (2023). Locally adaptive cellular automata for goal-oriented self-organization. In H. Iizuka, K. Suzuki, R. Uno, L. Damiano, N. Spychala, M. Aguilera, et al. (Eds.), ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference (pp. 410-419). MIT Press. doi:10.1162/isal_a_00663.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-6491-E
Zusammenfassung
The essential ingredient for studying the phenomena of emergence is the ability to generate and manipulate emergent systems that span large scales. Cellular automata are the model class particularly known for their effective scalability but are also typically constrained by fixed local rules. In this paper, we propose a new model class of adaptive cellular automata that allows for the generation of scalable and expressive models. We show how to implement computation-effective adaptation by coupling the update rule of the cellular automaton with itself and the system state in a localized way. To demonstrate the applications of this approach, we implement two different emergent models: a self-organizing Ising model and two types of plastic neural networks, a rate and spiking model. With the Ising model, we show how coupling local/global temperatures to local/global measurements can tune the model to stay in the vicinity of the critical temperature. With the neural models, we reproduce a classical balanced state in large recurrent neuronal networks with excitatory and inhibitory neurons and various plasticity mechanisms. Our study opens multiple directions for studying collective behavior and emergence.