English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A protein with similarity to the human retinoblastoma binding protein 2 acts specifically as a repressor for genes regulated by the b mating type locus in Ustilago maydis

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Quadbeck-Seeger, C., Wanner, G., Huber, S., Kahmann, R., & Kamper, J. (2000). A protein with similarity to the human retinoblastoma binding protein 2 acts specifically as a repressor for genes regulated by the b mating type locus in Ustilago maydis. MOLECULAR MICROBIOLOGY, 38(1), 154-166. doi:10.1046/j.1365-2958.2000.02128.x.


Cite as: https://hdl.handle.net/21.11116/0000-000D-6CD0-F
Abstract
Pathogenic development in the corn smut fungus Ustilago maydis is controlled by a heterodimer of the two homeodomain proteins bE and bW which are encoded by the b mating type locus. The bE/bW heterodimer is thought to achieve its function as a transcriptional regulator of pathogenicity genes, either directly by binding to cis regulatory sequences or indirectly via a b-dependent regulatory cascade.
In a screen for components of the b-dependent regulatory cascade we have isolated Rum1 (regulator U. maydis 1), a protein with similarities to the human retinoblastoma binding protein 2. Deletion of rum1 results in expression of several b regulated genes independently from their activation via the bE/bW heterodimer, rum1 mutant strains remain pathogenic, proliferate in planta, but fail to produce spores. The defect leads to an arrest in spore development at a defined stage before the spore wall is generated. Deduced from the highly conserved domain structure of Rum1 that includes a DNA-binding motif and a region known to facilitate the interaction with histone deacetylases, we propose that Rum1 functions as a transcriptional repressor through the modulation of chromatin structure.