English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Zebrafish pigmentation mutations and the processes of neural crest development

MPS-Authors
/persons/resource/persons274437

Kelsh,  RN       
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons219033

Brand,  M       
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274433

Jiang,  Y-J
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons219231

Heisenberg,  C-P
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons290888

Lin,  S
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274411

Haffter,  P
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274416

Odenthal,  J
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274439

Mullins,  MC
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274409

van Eeden,  FJM
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274429

Furutani-Seiki,  M
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274425

Granato,  M
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons191086

Hammerschmidt,  M
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274435

Kane,  DA
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274441

Warga,  RM
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons277769

Beuchle,  D
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274482

Vogelsang,  L       
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271460

Nüsslein-Volhard,  C       
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kelsh, R., Brand, M., Jiang, Y.-J., Heisenberg, C.-P., Lin, S., Haffter, P., et al. (1996). Zebrafish pigmentation mutations and the processes of neural crest development. Development, 123(1), 369-389. doi:10.1242/dev.123.1.369.


Cite as: https://hdl.handle.net/21.11116/0000-000D-6D45-C
Abstract
Neural crest development involves cell-fate specification, proliferation, patterned cell migration, survival and differentiation. Zebrafish neural crest derivatives include three distinct chromatophores, which are well-suited to genetic analysis of their development. As part of a large-scale mutagenesis screen for embryonic/early larval mutations, we have isolated 285 mutations affecting all aspects of zebrafish larval pigmentation. By complementation analysis, we define 94 genes. We show here that comparison of their phenotypes permits classification of these mutations according to the types of defects they cause, and these suggest which process of neural crest development is probably affected. Mutations in eight genes affect the number of chromatophores: these include strong candidates for genes necessary for the processes of pigment cell specification and proliferation. Mutations in five genes remove part of the wild-type pigment pattern, and suggest a role in larval pigment pattern formation. Mutations in five genes show ectopic chromatophores in distinct sites, and may have implications for chromatophore patterning and proliferation. 76 genes affect pigment or morphology of one or more chromatophore types: these mutations include strong candidates for genes important in various aspects of chromatophore differentiation and survival. In combination with the embryological advantages of zebrafish, these mutations should permit cellular and molecular dissection of many aspects of neural crest development.