日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Mutations affecting the cardiovascular system and other internal organs in zebrafish

MPS-Authors
/persons/resource/persons274411

Haffter,  P
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274416

Odenthal,  J
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274482

Vogelsang,  E
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons219033

Brand,  M
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274409

van Eeden,  FJM
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274429

Furutani-Seiki,  M
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274425

Granato,  M
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons191086

Hammerschmidt,  M
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons219231

Heisenberg,  CP
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274433

Jiang,  Y-J
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274435

Kane,  DA
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274437

Kelsh,  RN
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274439

Mullins,  MC
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271460

Nüsslein-Volhard,  C
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Chen, J.-N., Haffter, P., Odenthal, J., Vogelsang, E., Brand, M., van Eeden, F., Furutani-Seiki, M., Granato, M., Hammerschmidt, M., Heisenberg, C., Jiang, Y.-J., Kane, D., Kelsh, R., Mullins, M., & Nüsslein-Volhard, C. (1996). Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development, 123, 293-302. doi:10.1242/dev.123.1.293.


引用: https://hdl.handle.net/21.11116/0000-000D-6F83-3
要旨
In a screen for early developmental mutants of the zebrafish, we have identified mutations specifically affecting the internal organs. We identified 53 mutations affecting the cardiovascular system. Nine of them affect specific landmarks of heart morphogenesis. Mutations in four genes cause a failure in the fusion of the bilateral heart primordia, resulting in cardia bifida. In lonely atrium, no heart venticle is visible and the atrium is directly fused to the outflow tract. In the overlooped mutant, the relative position of the two heart chambers is distorted. The heart is enormously enlarged in the santa mutant. In two mutants, scotch tape and superglue, the cardiac jelly between the two layers of the heart is significantly reduced. We also identified a number of mutations affecting the function of the heart. The mutations affecting heart function can be subdivided into two groups, one affecting heart contraction and another affecting the rhythm of the heart beat. Among the contractility group of mutants are 5 with no heart beat at all and 15 with a reduced heart beat of one or both chambers. 6 mutations are in the rhythmicity group and specifically affect the beating pattern of the heart. Mutations in two genes, bypass and kurzschluss, cause specific defects in the circulatory system. In addition to the heart mutants, we identified 23 mutations affecting the integrity of the liver, the intestine or the kidney. In this report, we demonstrate that it is feasible to screen for genes specific for the patterning or function of certain internal organs in the zebrafish. The mutations presented here could serve as an entry point to the establishment of a genetic hierarchy underlying organogenesis.