English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

A Non-isotropic Probabilistic Take on Proxy-based Deep Metric Learning

MPS-Authors
/persons/resource/persons127761

Akata,  Zeynep       
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kirchhof, M., Roth, K., Akata, Z., & Kasneci, E. (2022). A Non-isotropic Probabilistic Take on Proxy-based Deep Metric Learning. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, & T. Hassner (Eds.), Computer Vision – ECCV 2022 (pp. 435-454). Cham: Springer. doi:10.1007/978-3-031-19809-0_25.


Cite as: https://hdl.handle.net/21.11116/0000-0010-2EF4-8
Abstract
There is no abstract available