English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Hermite Polynomial Features for Private Data Generation

MPS-Authors

Vinaroz ,  Margarita
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Charusaie ,  Mohammad-Amin
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons238780

Harder,  Frederik
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons286495

Adamczewski,  Kamil
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Vinaroz, M., Charusaie, M.-A., Harder, F., Adamczewski, K., & Park, M. J. (2022). Hermite Polynomial Features for Private Data Generation. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, & S. Sabato (Eds.), Proceedings of the 39th International Conference on Machine Learning (ICML 2022) (pp. 22300-22324). PMLR. Retrieved from https://proceedings.mlr.press/v162/vinaroz22a.html.


Cite as: https://hdl.handle.net/21.11116/0000-0010-2F7E-E
Abstract
There is no abstract available