English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bayesian field-level inference of primordial non-Gaussianity using next-generation galaxy surveys

MPS-Authors
/persons/resource/persons133110

Schmidt,  Fabian
Physical Cosmology, MPI for Astrophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Andrews, A., Jasche, J., Lavaux, G., & Schmidt, F. (2023). Bayesian field-level inference of primordial non-Gaussianity using next-generation galaxy surveys. Monthly Notices of the Royal Astronomical Society, 520(4), 5746-5763. doi:10.1093/mnras/stad432.


Cite as: https://hdl.handle.net/21.11116/0000-000D-85A9-E
Abstract
Detecting and measuring a non-Gaussian signature of primordial origin in the density field is a major science goal of next-generation galaxy surveys. The signal will permit us to determine primordial-physics processes and constrain models of cosmic inflation. While traditional approaches use a limited set of statistical summaries of the galaxy distribution to constrain primordial non-Gaussianity, we present a field-level approach by Bayesian forward modelling the entire three-dimensional galaxy survey. Since our method includes the entire cosmic field in the analysis, it can naturally and fully self-consistently exploit all available information in the large-scale structure, to extract information on the local non-Gaussianity parameter, fnl. Examples include higher order statistics through correlation functions, peculiar velocity fields through redshift-space distortions, and scale-dependent galaxy bias. To illustrate the feasibility of field-level primordial non-Gaussianity inference, we present our approach using a first-order Lagrangian perturbation theory model, approximating structure growth at sufficiently large scales. We demonstrate the performance of our approach through various tests with self-consistent mock galaxy data emulating relevant features of the SDSS-III/BOSS-like survey, and additional tests with a Stage IV mock data set. These tests reveal that the method infers unbiased values of fnl by accurately handling survey geometries, noise, and unknown galaxy biases. We demonstrate that our method can achieve constraints of σfnl≈8.78 for SDSS-III/BOSS-like data, indicating potential improvements of a factor ∼2.5 over current published constraints. We perform resolution studies on scales larger than ∼16h−1 Mpc showing the promise of significant constraints with next-generation surveys. Furthermore, the results demonstrate that our method can consistently marginalize all nuisance parameters of the data model. The method further provides an inference of the three-dimensional primordial density field, providing opportunities to explore additional signatures of primordial physics. This first demonstration of a field-level inference pipeline demonstrates a promising complementary path forward for analysing next-generation surveys.