日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites

MPS-Authors
/persons/resource/persons267176

Rüscher,  Martina
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons291369

Martini,  Andrea       
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons227619

Timoshenko,  Janis       
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22020

Roldan Cuenya,  Beatriz       
Interface Science, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

s41467-023-40174-4.pdf
(出版社版), 3MB

付随資料 (公開)
There is no public supplementary material available
引用

Murphy, E., Liu, Y., Matanovic, I., Rüscher, M., Huang, Y., Ly, A., Guo, S., Zang, W., Yan, X., Martini, A., Timoshenko, J., Roldan Cuenya, B., Zenyuk, I. V., Pan, X., Spoerke, E. D., & Atanassov, P. (2023). Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites. Nature Communications, 14:. doi:10.1038/s41467-023-40174-4.


引用: https://hdl.handle.net/21.11116/0000-000D-87FD-E
要旨
Electrocatalytic reduction of waste nitrates (NO3) enables the synthesis of ammonia (NH3) in a carbon neutral and decentralized manner. Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts demonstrate a high catalytic activity and uniquely favor mono-nitrogen products. However, the reaction fundamentals remain largely underexplored. Herein, we report a set of 14; 3d-, 4d-, 5d- and f-block M-N-C catalysts. The selectivity and activity of NO3 reduction to NH3 in neutral media, with a specific focus on deciphering the role of the NO2 intermediate in the reaction cascade, reveals strong correlations (R=0.9) between the NO2 reduction activity and NO3 reduction selectivity for NH3. Moreover, theoretical computations reveal the associative/dissociative adsorption pathways for NO2 evolution, over the normal M-N4 sites and their oxo-form (O-M-N4) for oxyphilic metals. This work provides a platform for designing multi-element NO3RR cascades with single-atom sites or their hybridization with extended catalytic surfaces.