English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Assessment of aldehyde contributions to PTR-MS m/z 69.07 in indoor air measurements

MPS-Authors
/persons/resource/persons211374

Ernle,  Lisa
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons239555

Wang,  Nijing
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101364

Williams,  Jonathan
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ernle, L., Wang, N., Bekoe, G., Morrison, G., Wargocki, P., Weschler, C. J. J., et al. (2023). Assessment of aldehyde contributions to PTR-MS m/z 69.07 in indoor air measurements. Environmental science: Atmospheres. doi:10.1039/d3ea00055a.


Cite as: https://hdl.handle.net/21.11116/0000-000D-8C78-F
Abstract
Proton transfer reaction-mass spectrometry (PTR-MS) has been widely used for monitoring outdoor and indoor volatile organic compounds. For outdoor air, mass-to-charge-ratio m/z 69.07 is usually assigned to isoprene. Isoprene is also a major component of human breath and therefore abundant in occupied indoor environments. Mass 69.07 as an indicator of indoor isoprene can suffer interference resulting from fragmentation of aldehydes [V. Ruzsanyi, et al., Multi-capillary-column proton-transfer-reaction time-of-flight mass spectrometry, J. Chromatogr. A, 2013, 1316, 112–118], which are also abundant indoors, especially when ozone is elevated [C. J. Weschler, Roles of the human occupant in indoor chemistry, Indoor Air, 2016, 26, 6–24]. As part of the Indoor Chemical Human Emission and Reactivity (ICHEAR) campaign we examined this effect in human-occupied chamber studies, in the absence and presence of ozone. We find that such interferences do occur when ozone reacts with both human skin oil and cotton-based clothing. In the presence of humans and 35 ppb ozone, PTR-mass 69.07 was three times higher than the isoprene mixing ratio measured independently by GC-MS. To investigate this effect, we measured the fragmentation patterns of aldehydes and examined the contribution of different aldehydes to m/z 69.07 in the ICHEAR experiments. Nonanal, and its contribution to m/z 69.07, could be quantified reliably for clothing and human dermal emissions under the experimental conditions. In contrast, decanal is difficult to quantify, since compounds other than decanal fragment to m/z 157.16, its MH+ peak, which also makes it difficult to estimate decanal's contribution to m/z 69.07.