Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Influence of Free Layer Surface Roughness on Magnetic and Electrical Properties of 300 mm CMOS-compatible MTJ Stacks

MPG-Autoren
/persons/resource/persons291467

Durner,  Christoph       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons245678

Parkin,  Stuart       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Durner, C., Lederer, M., Gurieva, T., Hertel, J., Hindenberg, M., Gerlich, L., et al. (2023). Influence of Free Layer Surface Roughness on Magnetic and Electrical Properties of 300 mm CMOS-compatible MTJ Stacks. IEEE Transactions on Magnetics, 59(11): 4400404. doi:10.1109/TMAG.2023.3287134.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-8CA8-8
Zusammenfassung
The magnetic tunnel junction (MTJ) is a highly versatile device widely used in today’s spintronic applications such as magnetoresistive random-access memory (MRAM), magnetic sensors and prospectively as a read device in racetrack memory. Tuning the perpendicular (p-)MTJ stack to match the desired properties, such as tunnel magnetoresistance (TMR), magnetic anisotropies or coercive field of the free layer, requires careful optimization of the deposition parameters as well as precise layer thickness control. Here, the deposition of individual layers in a wedged manner across 300 mm wafers is proposed to engineer the thicknesses within the stack more efficiently. Furthermore, this technique provides detailed insights into effects related to surface roughness, magnetic anisotropy and TMR.