日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Polychaetoid/ZO-1 strengthens cell junctions under tension while localizing differently than core adherens junction proteins

MPS-Authors
/persons/resource/persons239830

Häring,  Matthias
Research Group Theoretical Neurophysics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173710

Wolf,  Fred
Research Group Theoretical Neurophysics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Peifer, M., Schmidt, A., Finegan, T., Häring, M., Kong, D., Fletcher, A. G., Alam, Z., Grosshans, J., & Wolf, F. (2023). Polychaetoid/ZO-1 strengthens cell junctions under tension while localizing differently than core adherens junction proteins. Molecular Biology of the Cell, 34(8):. doi:10.1091/mbc.E23-03-0077.


引用: https://hdl.handle.net/21.11116/0000-000D-9F79-9
要旨
During embryonic development, dramatic cell shape changes and movements reshape the embryonic body plan. These require robust but dynamic linkage between the cell–cell adherens junctions and the force-generating actomyosin cytoskeleton. Our view of this linkage has evolved, and we now realize linkage is mediated by mechanosensitive multiprotein complexes assembled via multivalent connections. Here we combine genetic, cell biological, and modeling approaches to define the mechanism of action and functions of an important player, Drosophila polychaetoid, homologue of mammalian ZO-1. Our data reveal that Pyd reinforces cell junctions under elevated tension, and facilitates cell rearrangements. Pyd is important to maintain junctional contractility and in its absence cell rearrangements stall. We next use structured illumination microscopy to define the molecular architecture of cell–cell junctions during these events. The cadherin–catenin complex and Cno both localize to puncta along the junctional membrane, but are differentially enriched in different puncta. Pyd, in contrast, exhibits a distinct localization to strands that extend out from the region occupied by core junction proteins. We then discuss the implications for the protein network at the junction–cytoskeletal interface, suggesting different proteins localize and function in distinct ways, perhaps in distinct subcomplexes, but combine to produce robust connections.