Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Electrochemical transport in Dirac nodal-line semimetals

MPG-Autoren
/persons/resource/persons291747

Flores-Calderón,  R.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Flores-Calderón, R., Medel, L., & Martín-Ruiz, A. (2023). Electrochemical transport in Dirac nodal-line semimetals. EPL, 143(1): 16001, pp. 1-7. doi:10.1209/0295-5075/acde5e.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-A1DC-5
Zusammenfassung
Nodal-line semimetals are topological phases where the conduction and the valence bands cross each other along one-dimensional lines in the Brillouin zone, which are symmetry protected by either spatial symmetries or time-reversal symmetry. In particular, nodal lines protected by the combined symmetry exhibits the parity anomaly of 2D Dirac fermions. In this letter, we study the electrochemical transport in Dirac nodal-line semimetals by using the semiclassical Boltzmann equation approach. We derive a general formula for the topological current that includes both the Berry curvature and the orbital magnetic moment. We first evaluate the electrochemical current by introducing a small mass term (which could be induced by inversion-breaking uniaxial strain, pressure, or an external electric field) and apply it to the hexagonal pnictide CaAgP. The electrochemical current vanishes in the zero-mass limit. Introducing a tilting term that does not spoil symmetry that protects the nodal ring, we obtain a finite electrochemical current in the zero-mass limit, which can be regarded as a direct consequence of the parity anomaly. We show that the parity-anomaly-induced electrochemical transport is also present at nonzero temperatures. Copyright © 2023 The author(s)