English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Determining glass transition in all-atom acrylic polymeric melt simulations using machine learning

MPS-Authors
/persons/resource/persons251895

Banerjee,  Atreyee
Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons241320

Iscen,  Aysenur
Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons48227

Kremer,  Kurt
Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons265586

Kukharenko,  Oleksandra
Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Banerjee, A., Iscen, A., Kremer, K., & Kukharenko, O. (2023). Determining glass transition in all-atom acrylic polymeric melt simulations using machine learning. The Journal of Chemical Physics, 159(7): 074108. doi:10.1063/5.0151156.


Cite as: https://hdl.handle.net/21.11116/0000-000D-A3B3-0
Abstract
There is no abstract available