English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Hyperthermal velocity distributions of recombinatively-desorbing oxygen from Ag(111)

MPS-Authors
/persons/resource/persons281084

Dorst,  Arved Cedric
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons292590

Dissanayake,  Rasika E. A.
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons16046

Wodtke,  Alec M.       
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons15751

Schäfer,  Tim
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

fchem-11-1248456.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Dorst, A. C., Dissanayake, R. E. A., Schauermann, D., Knies, S., Wodtke, A. M., Killelea, D., et al. (2023). Hyperthermal velocity distributions of recombinatively-desorbing oxygen from Ag(111). Frontiers in Chemistry, 11: 1248456. doi:10.3389/fchem.2023.1248456.


Cite as: https://hdl.handle.net/21.11116/0000-000D-BFCD-6
Abstract
This study presents velocity-resolved desorption experiments of recombinatively-desorbing oxygen from Ag (111). We combine molecular beam techniques, ion imaging, and temperature-programmed desorption to obtain translational energy distributions of desorbing O2. Molecular beams of NO2 are used to prepare a p (4 × 4)-O adlayer on the silver crystal. The translational energy distributions of O2 are shifted towards hyperthermal energies indicating desorption from an intermediate activated molecular chemisorption state.