English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Gibbs–Helmholtz graph neural network: capturing the temperature dependency of activity coefficients at infinite dilution

MPS-Authors
/persons/resource/persons248557

Sanchez Medina,  Edgar Ivan
International Max Planck Research School (IMPRS), Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

/persons/resource/persons217832

Linke,  Steffen
International Max Planck Research School (IMPRS), Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

/persons/resource/persons86497

Sundmacher,  Kai       
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

sanchez_medina_3528776.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Sanchez Medina, E. I., Linke, S., Stoll, M., & Sundmacher, K. (2023). Gibbs–Helmholtz graph neural network: capturing the temperature dependency of activity coefficients at infinite dilution. Digital Discovery, 2(3), 781-798. doi:10.1039/D2DD00142J.


Cite as: https://hdl.handle.net/21.11116/0000-000D-C323-F
Abstract
There is no abstract available