English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

The timing bottleneck: Why timing and overlap are mission-critical for conversational user interfaces, speech recognition and dialogue systems

MPS-Authors
/persons/resource/persons301163

Lopez,  Alianda
Center for Language Studies, External Organizations;
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Liesenfeld, A., Lopez, A., & Dingemanse, M. (2023). The timing bottleneck: Why timing and overlap are mission-critical for conversational user interfaces, speech recognition and dialogue systems. In Proceedings of the 24rd Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDial 2023). doi:10.18653/v1/2023.sigdial-1.45.


Cite as: https://hdl.handle.net/21.11116/0000-000D-BBBA-F
Abstract
Speech recognition systems are a key intermediary in voice-driven human-computer interaction. Although speech recognition works well for pristine monologic audio, real-life use cases in open-ended interactive settings still present many challenges. We argue that timing is mission-critical for dialogue systems, and evaluate 5 major commercial ASR systems for their conversational and multilingual support. We find that word error rates for natural conversational data in 6 languages remain abysmal, and that overlap remains a key challenge (study 1). This impacts especially the recognition of conversational words (study 2), and in turn has dire consequences for downstream intent recognition (study 3). Our findings help to evaluate the current state of conversational ASR, contribute towards multidimensional error analysis and evaluation, and identify phenomena that need most attention on the way to build robust interactive speech technologies.