English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Constraints on the Intergalactic Magnetic Field Using Fermi-LAT and H.E.S.S. Blazar Observations

MPS-Authors
/persons/resource/persons30244

Aharonian,  F.       
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons269770

Bouyahiaoui,  M.
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons226175

Breuhaus,  M.       
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons291361

Haerer,  L.
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons37725

Marandon,  V.       
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons267367

Mohrmann,  L.       
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons242418

Olivera Nieto,  L.       
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30878

Panter,  M.
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30940

Reville,  B.       
Brian Reville, Astrophysical Plasma Theory (APT) - Max Planck Research Group, Junior Research Groups, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30943

Rieger,  F.
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons252628

Ruiz-Velasco,  E.       
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons240503

Steinmassl,  S.       
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons146341

White,  R.
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

H.E.S.S. Collaboration, Fermi-LAT Collaboration, Aharonian, F., Aschersleben, J., Backes, M., Barbosa Martins, V., et al. (2023). Constraints on the Intergalactic Magnetic Field Using Fermi-LAT and H.E.S.S. Blazar Observations. The Astrophysical Journal Letters, 950 (2): L16. doi:10.3847/2041-8213/acd777.


Cite as: https://hdl.handle.net/21.11116/0000-000D-BC95-7
Abstract
Magnetic fields in galaxies and galaxy clusters are believed to be the result of the amplification of intergalactic seed fields during the formation of large-scale structures in the universe. However, the origin, strength, and morphology of this intergalactic magnetic field (IGMF) remain unknown. Lower limits on (or indirect detection of) the IGMF can be obtained from observations of high-energy gamma rays from distant blazars. Gamma rays interact with the extragalactic background light to produce electron−positron pairs, which can subsequently initiate electromagnetic cascades. The gamma-ray signature of the cascade depends on the IGMF since it deflects the pairs. Here we report on a new search for this cascade emission using a combined data set from the Fermi Large Area Telescope and the High Energy Stereoscopic System. Using state-of-the-art Monte Carlo predictions for the cascade signal, our results place a lower limit on the IGMF of B > 7.1 × 10−16 G for a coherence length of 1 Mpc even when blazar duty cycles as short as 10 yr are assumed. This improves on previous lower limits by a factor of 2. For longer duty cycles of 104 (107) yr, IGMF strengths below 1.8 × 10−14 G (3.9 × 10−14 G) are excluded, which rules out specific models for IGMF generation in the early universe.